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Abstract

Building effective world models for embodied AI systems requires generating phys-
ically plausible temporal sequences, yet current approaches face significant barriers
in specialized domains. Diffusion models, while producing high visual quality,
demand extensive datasets and computational resources that limit deployment
in real-world embodied applications. This paper argues for revisiting Genera-
tive Adversarial Networks (GANs) as architecturally-informed alternatives for
world modeling in data-constrained environments. We demonstrate this through
PhenoGAN, a spatio-temporal Progressively Growing GAN that learns physical
process dynamics from limited data (< 1k images). The progressive architecture’s
inductive bias through its coarse-to-fine learning curriculum mirrors natural de-
velopmental processes, enabling physically consistent temporal evolution without
massive datasets. We introduce domain-specific evaluation protocols that assess
physical plausibility through biological indices, achieving near-perfect correlation
(r > 0.98) with ground truth measurements across multiple environmental condi-
tions. Our results demonstrate that structurally-informed GANs can achieve both
high physical fidelity and computational efficiency, positioning them as comple-
mentary tools for world models in embodied AI applications ranging from robotics
to automated systems.

1 Introduction

Generating physically plausible dynamic scenes is a cornerstone for building world models for
embodied agents Zhu et al. [2024] Fu et al. [2024] Huang et al. [2025a]. While diffusion models
have shown success in visually rich simulations Ho et al. [2020], Rombach et al. [2022], Ho et al.
[2022] Zhang et al. [2024], their reliance on massive datasets and struggles with maintaining physical
consistency Liu et al. [2025], Clark et al. [2019] Zhao et al. [2025] present critical barriers for
embodied AI in data-scarce domains Brooks et al. [2024]. This challenge highlights the need for
models that can be effectively grounded in physical reality, particularly when data is limited Qin et al.
[2024].

In this work, we argue that a path toward grounded world models lies in leveraging architectures
with strong, task-aligned inductive biases Yin et al. [2025] Aldausari et al. [2020]. We focus on
the Progressively Growing GAN (PGGAN) architecture Karras et al. [2018b], whose coarse-to-fine
learning curriculum acts as a powerful architectural prior Karras et al. [2018a]. Unlike monolithic
models, this structure allows the model to first learn fundamental, low-frequency dynamics before
refining high-frequency details Karras et al. [2018b] Sagar [2025]. This process mirrors natural
developmental stages, enabling the generation of physically plausible sequences from sparse data Liu
et al. [2024] Liu and Vahdat [2025].
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We ground this approach with PhenoGAN, a spatio-temporal model that learns plant growth dynamics
from fewer than 1k images. Crucially, beyond generation, we introduce a domain-specific evaluation
protocol that assesses physical plausibility against biological indices rather than relying solely on
visual fidelity. Our results validate that structurally-informed GANs are not only data-efficient but
can achieve the high physical fidelity required for grounded world models Skorokhodov et al. [2022],
Lin et al. [2025], Karras et al. [2019, 2020b], Huang et al. [2025b], Karras et al. [2020a] Munoz et al.
[2020].

2 Methodology

PhenoGAN is a spatio-temporal generative model designed to predict future video frames conditioned
on a sequence of past observations. The framework extends the Progressively Growing GAN
(PGGAN) architecture Karras et al. [2018b] and is based upon Aigner and Körner [2018], originally
conceived for high-quality single image synthesis, to the complex task of video prediction. By
learning directly from raw RGB pixel sequences, the model captures the underlying dynamics of
physical processes without relying on domain-specific feature engineering. The model consists of a
generator and a discriminator trained in an adversarial setting.

Figure 1: The PhenoGAN generator architecture. New layers are progressively added to increase
the output resolution from 4 × 4 (top) to 128 × 128 (bottom), forming a coarse-to-fine learning
curriculum.

2.1 Architecture and Training

The generator uses an encoder-decoder architecture transforming past frames into future frames.
All layers employ spatio-temporal 3D convolutions Tran et al. [2015] to capture appearance and
motion. The encoder processes tin frames using 3D convolutions with asymmetric kernels and strides
for spatial downsampling, producing compact latent representations. The decoder uses transposed
3D convolutions for upsampling to generate tout future frames, with LeakyReLU activation for
vanishing gradient mitigation. The discriminator distinguishes real from fake sequences, providing
adversarial signal. For training stability, a mini-batch standard deviation layer computes feature
standard deviations across spatio-temporal locations and batch examples, with averaged values
replicated and concatenated as additional input features to incentivize varied generator outputs and
prevent mode collapse.
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PhenoGAN adopts the core PGGAN training strategy, illustrated in Figure 1. Training begins at
a low spatial resolution (4 × 4 pixels), allowing the network to first learn coarse, low-frequency
features. As training stabilizes, new layers are added to both generator and discriminator to double
the working resolution through smooth transition phases. The full visual progression of generated
samples throughout this training process is detailed in Appendix A.5.

PhenoGAN employs the Wasserstein GAN with gradient penalty (WGAN-GP) loss function Gulrajani
et al. [2017] to optimize both the generator and discriminator. This loss function is known for
improving training stability and the quality of generated samples compared to earlier GAN objectives.
The full loss formulation and hyperparameter details are available in the Appendix.

3 Results and Evaluation

We evaluated PhenoGAN on two small plant phenotyping datasets, Arabidopsis thaliana and Beta
vulgaris, to assess physically plausible sequence generation from sparse data. Detailed descriptions
of these datasets, including growth and stress conditions, are provided in Appendix B.1. Evaluation
combines image fidelity metrics with domain-specific biological indices.

Figure 2: PhenoGAN sequences for Beta Vulgaris under combined stress (Drying, Medium Nitrogen,
High Weed). Top: Input frames (t to t+ 3). Bottom: Generated future frames (t+ 4 to t+ 7).

Figure 3: Ground truth vs. PGGAN sequences. Top: Ground truth input and expected output.
Bottom Left: Input to PGGAN. Bottom Right: PGGAN output.

3.1 Quantitative Evaluation of Physical Plausibility

PhenoGAN generates visually coherent growth sequences. As shown in Figure 2 and Figure 3, when
modeling Beta vulgaris under combined stresses (Drying, Medium Nitrogen, High Weed), the model
captures complex morphological changes: foliage density increases and plant health shifts.

While visual quality is a prerequisite, we argue that for a world model to be useful for embodied
agents, its generations must be physically plausible. To validate this, our evaluation protocol moves
beyond standard pixel-level metrics. We first establish a baseline with common image fidelity
scores and then introduce a framework for quantifying biological plausibility using domain-specific
vegetation indices.
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Image Fidelity: As shown in Table 1, PhenoGAN achieves strong performance across standard
metrics.

Table 1: Image Fidelity and Distributional Similarity Metrics for PhenoGAN. Lower is better for
MSE and FID; higher is better for SSIM and PSNR.

Dataset MSE ↓ SSIM ↑ PSNR ↑ FID ↓
Arabidopsis 0.0098 0.562 26.32 N/A
Vulgaris 0.0077 0.728 27.42 116.73

Biological Plausibility via Vegetation Indices: We evaluated biological understanding using vegeta-
tion indices—mathematical combinations of RGB channels that quantify plant health:

Index Formula Purpose
ExG 2g - r - b Highlights green vegetation
ExR 1.4r - g Indicates non-vegetated/stressed areas
ExGR ExG - ExR Robust vegetation segmentation index
PLA - Projected Leaf Area from ExGR segmentation

PhenoGAN achieved near-perfect correlations with ground truth across all indices (r ≥ 0.99 for Beta
vulgaris), including perfect correlation for ExR (r = 1.00). Performance remained high for both
control (r = 0.997 for PLA) and stressed plants (r = 0.992 for PLA), demonstrating quantitatively
accurate responses to environmental stressors.

This high performance is consistent across all evaluation subsets. A detailed quantitative analysis,
including correlation scatter plots and a performance breakdown for each individual stress condition
for the Beta vulgaris dataset, is available in Appendix B.4.

Table 2: Pearson’s Correlation Coefficient (r) between Generated and Ground Truth Vegetation
Indices for PhenoGAN, indicating physical plausibility. Results are statistically significant.

Dataset PLA ↑ ExG ↑ ExGR ↑ ExR ↑
Arabidopsis 0.98 0.97 0.96 0.83
Vulgaris 0.99 0.99 0.99 1.00
- Control Avg. 0.997 1.00 0.99 0.99
- Stress Avg. 0.992 0.98 0.98 0.98

Visualizations of these indices applied to sample frames from both datasets, demonstrating their
effectiveness in segmenting plant biomass, are provided in Appendix B.3.

4 Conclusion

This paper has argued for the renewed importance of data-efficient GANs in building physically-
grounded world models for embodied AI. We grounded this position through a detailed case study,
PhenoGAN, a spatio-temporal PGGAN that successfully models complex plant growth and stress
response dynamics from < 1k images. The success stems from the powerful inductive bias of the pro-
gressive growing architecture—its coarse-to-fine learning curriculum mirrors natural developmental
processes, enabling plausible dynamics learning from temporally sparse data. The model’s physical
plausibility is validated by near-perfect correlations (r > 0.98) with ground-truth biological markers
and superior performance over feature-based state-of-the-art methods. While the architectural prior is
highly effective for developmental processes, its applicability to more chaotic physical systems and
the fidelity of very long-horizon predictions remain open questions. Nevertheless, these principles
offer a promising blueprint for embodied tasks, from robotics to automated agricultural systems.
As the field advances toward more capable embodied agents, we advocate embracing diverse gen-
erative architectures where data-efficient, structurally-informed models like PGGANs complement
large-scale approaches in addressing real-world challenges across domains.
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A Implementation and Training Details

This appendix provides supplementary details regarding the model architecture, loss function, and
training hyperparameters.

A.1 Progressive Training Strategy

Our training process closely follows the progressive growing methodology to ensure stability and
high-quality results.

Adding Layers for Increased Resolution: Training begins at a very low resolution (4× 4 pixels).
As the network learns, new layers are smoothly faded in to double the working resolution. This
process involves a "transition phase," where the new layers are treated as a residual block with a
weight α that increases linearly from 0 to 1, followed by a "stabilization phase" where the network
trains at the new resolution. This incremental approach speeds up and stabilizes training, as the
network only needs to learn small refinements at each step.

Training Stability Techniques: To prevent unhealthy competition between the generator and
discriminator, we employ several stabilization techniques from the PGGAN framework. This includes
element-wise weight scaling in all convolutional layers to equalize the learning speed across the
network, and pixel-wise feature vector normalization within the generator to prevent the escalation of
signal magnitudes.

A.2 Loss Function Formulation

The WGAN-GP loss with epsilon penalty for optimizing the discriminator is defined as:

LD(x, x̃, x̂) = E
x̃∼Pg

[D(x̃)]− E
x∼Pr

[D(x)]︸ ︷︷ ︸
WGAN loss

+λ E
x̂∼Px̂

[
(∥∇x̂D(x̂)∥2 − 1)

2
]

︸ ︷︷ ︸
gradient-penalty

+ ε E
x∼Pr

D(x)2︸ ︷︷ ︸
epsilon-penalty

,

where Pr is the data distribution, Pg is the model distribution implicitly defined by x̃ = G(z),
x̃ ∼ p(x̃), ε is the epsilon-penalty coefficient, and λ is the gradient-penalty coefficient. Px̂ is
implicitly defined, sampling uniformly along straight lines between pairs of points sampled from
the data distribution Pr and the generator distribution Pg. The WGAN-GP loss for optimizing the
generator is defined as:

LG(x̃) = − E
x̃∼Pg

[D(x̃)]

A.3 Network Architecture

The generator and discriminator architectures follow the PGGAN structure, modified with 3D
convolutional layers to process spatio-temporal data. A detailed diagram of the generator at multiple
resolutions is shown in Figure 4.

Figure 4: Detailed architecture of the PhenoGAN generator, showing the progressive addition of
layers to increase resolution from 4× 4 (bottom) to 16× 16 (middle) and 64× 64 (top).

A.4 Hyperparameter Details

The PhenoGAN model was trained using the Adam optimizer with a regularizer. Table 3 summarizes
all training hyperparameters used for PhenoGAN.

A.5 Training Progression Visuals

Figure 5 shows the visual evolution of generated samples for the Arabidopsis thaliana dataset. The
images illustrate the coarse-to-fine learning process central to the PGGAN methodology. The model
begins by generating incoherent 4× 4 images at early epochs and gradually resolves into structured,
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Table 3: PhenoGAN Training Hyperparameters
Hyperparameter Value
Optimizer Adam
Learning Rate 0.001 (with decay)
β1 0.0
β2 0.99
Gradient Penalty (λ) 10
Epsilon Penalty (ε) 0.001

high-fidelity 128× 128 images as higher-resolution layers are added and trained. This visualization
provides qualitative evidence of stable training and the model’s ability to learn increasingly complex
features.

Figure 5: Generated image samples from PhenoGAN throughout training, from epoch 0 to 230. The
model’s ability to capture structure and detail improves as the resolution doubles from 4× 4, to 8× 8,
and eventually to 128× 128.
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B Experimental Datasets and Extended Results

B.1 Dataset Details

The experiments were conducted on two publicly available plant phenotyping datasets.

• Arabidopsis thaliana: This dataset contains approximately 619 images of a model plant
species grown under controlled, ideal conditions in a high-throughput environment. Scharr
et al. [2016]

• Beta vulgaris (Sugar Beet): This dataset contains approximately 432 images per condition
for sugar beet plants grown under a variety of environmental stressors, including drought,
nutrient deficiency, and weed pressure. Sánchez-Sastre et al. [2020]

B.2 Vegetation Index Formulation

The vegetation indices used for evaluating biological plausibility are calculated from normalized
RGB chromatic coordinates. First, the R, G, and B channels are normalized:

r =
R

R+G+B
, g =

G

R+G+B
, b =

B

R+G+B

From these normalized coordinates, the Excessive Green (ExG), Excessive Red (ExR), and Excessive
Green-Red (ExGR) indices are calculated as follows:

ExG = 2g − r − b

ExR = 1.4r − g

ExGR = ExG − ExR

The Projected Leaf Area (PLA) is then calculated by segmenting the image using the ExGR index
and counting the relevant pixels.

B.3 Visualization of Vegetation Indices

To provide intuition for the biological plausibility metrics used in the main paper, the following figures
show the output of the vegetation index calculations. The ExGR index, in particular, effectively
segments the plant biomass from the background soil, forming the basis for the Projected Leaf Area
(PLA) calculation. Figure 6 shows the segmentation on both datasets, while Figure 7 shows the ExGR
visualization across a temporal sequence.

Table 4: Comparison of Pearson’s Coefficient (r) for plant biomass/area prediction against prior work.
Our generative approach achieves state-of-the-art performance in capturing physical plausibility for
both controlled and stressed plants.

Paper Controlled Plant (r) Stressed Plant (r)
Montes et al. [2011] 0.9517 -
Feng et al. [2013] 0.9675 0.9140
Chen et al. [2014] 0.9891 0.9354
cGAN Drees et al. [2021] 0.877 -
PhenoGAN (ours) 0.997 0.992

B.4 Per-Condition Performance Analysis

To validate the robustness of PhenoGAN, we analyzed its performance on the Beta vulgaris dataset
across each of the eight distinct environmental conditions. Figure 8 shows that the model maintains
a near-perfect correlation between generated and ground truth vegetation indices across all tested
conditions, from "Control" to combined stresses like "Drying - Med N - High Weed."

Furthermore, as shown in Table 4, our model’s ability to capture physical plausibility (measured
by Pearson’s r on segmented plant area) meets or exceeds the performance of prior state-of-the-art
methods in plant phenotyping, including those that rely on feature-based approaches rather than direct
generative modeling.
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Beta vulgaris

Arabidopsis thaliana

Figure 6: Vegetation indices applied to frames from plant datasets. Top: Beta vulgaris dataset.
Bottom: Arabidopsis thaliana dataset.
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Figure 7: Visual ExGR applied to generated temporal sequences for both datasets.

Figure 8: Per-condition correlation plots for the Beta vulgaris dataset. The model maintains consis-
tently high correlation across all tested environmental stress conditions, demonstrating its robustness.
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