Tellodrone

Pranav Sitaraman, Dhruv Sheth, Jing Cao, Ali Saffarini

The Problem

Navigating unfamiliar environments is a very difficult task!

- Features uncertainty about the shape of new environments
- Demands efficient exploration, learning, and recollection techniques

One solution is multi-agent systems!

Several independent intelligent entities can collaborate to act intelligently

Our Hypothesis

- We can localize the environment without an explicit mapping beforehand
- Map the environment + Localize together with swarm collaboration
- Machine Learning approach to reconstruct environment iteratively

Our Goal

- Multi-drone coordination capable of exploring new environments
- Efficient localization system to enable cross-drone communication and positioning
- System to collaboratively explore and reconstruct an environment in 3D
- Figure out techniques to identify arbitrary start positions in GPS-denied environments

VGGT Algorithm

- Initializes drone at a start point relative to 3D point cloud environment constructed from camera feed
- Uses IMU and new camera feed to predict new drone pose
- Builds 3D point cloud of environment as drone moves
- Basic avoidance of walls, but would like to enhance obstacle avoidance capabilities in the future!

Our Framework

Planning Algorithm

- Splice together iterations of VGGT, with traditional planning in between
- 2. During planning, we update our location using the IMU, but this accrues error
- 3. Upon VGGT, we update our prior + re-orient believed position within new reconstruction

Images processed by VGGT

VGG19 with a Laplacian Filter

Blurry

Crisp(er)

VGGT: Constructing The Map over Time

VGGT Iteration 2

VGGT Iteration 3: Full Reconstruction

Video

Challenges

Hardware is hard! We spent a lot of time debugging the ability to control multiple drones from one source due to the ROS architecture we wished to develop.

- Ran into multiple IPS Address interference issues
- Multiple driver incompatibilities for Ubuntu system

We would like to actually build out the rest of the theoretical framework we developed in the future!

Future Plans

- Integrate individual components together
- Find the position of seeker drones relative to a base drone
- Robustifying backend server for lower latency
- Testing in outdoor settings
- Dynamic environments

Thank you!